Quasi-Passive Resistive Exosuit for Space Activities: Proof of Concept

Author:

Di Natali ChristianORCID,Chini Giorgia,Totaro MassimoORCID,Lora-Millán Julio S.ORCID,Rocon EduardoORCID,Beccai Lucia,Caldwell Darwin G.ORCID,Visentin Gianfranco,Ortiz JesúsORCID

Abstract

The limits of space travel are continuously evolving, and this creates increasingly extreme challenges for the crew’s health that must be addressed by the scientific community. Long-term exposure to micro-gravity, during orbital flights, contributes to muscle strength degradation and increases bone density loss. In recent years, several exercise devices have been developed to counteract the negative health effects of zero-gravity on astronauts. However, the relatively large size of these devices, the need for a dedicated space and the exercise time-frame for each astronaut, does not make these devices the best choice for future long range exploration missions. This paper presents a quasi-passive exosuit to provide muscle training using a small, portable, proprioceptive device. The exosuit promotes continuous exercise, by resisting the user’s motion, during routine all-day activity. This study assesses the effectiveness of the resistive exosuit by evaluating its effects on muscular endurance during a terrestrial walking task. The experimental assessment on biceps femoris and vastus lateralis, shows a mean increase in muscular activation of about 97.8% during five repetitions of 3 min walking task at 3 km/h. The power frequency analysis shows an increase in muscular fatigue with a reduction of EMG median frequency of about 15.4% for the studied muscles.

Funder

European Space Agency

Horizon 2020

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3