Profile Control Using Fly Ash Three-Phase Foam Assisted by Microspheres with an Adhesive Coating

Author:

Yang Yulong,Cheng Tingting,You ZhenjiangORCID,Liang Tuo,Hou Jirui

Abstract

Foam-assisted steam flooding is a promising technique to alleviate gas channeling and enhance sweep efficiency in heterogeneous heavy-oil reservoirs. However, long-term foam stabilization remains problematic at high temperatures. Three-phase foam (TPF), containing dispersed solid particles, has been proposed to improve foam stability under harsh reservoir conditions. We fabricated a novel TPF system by adding ultrafine fly ash particles, as well as high-temperature resistant microspheres with an adhesive coating layer. This work aims at assessing the ability of the generated TPF in controlling steam channeling and enhancing oil recovery. Static and core flood tests were performed to evaluate foam strength and stability. Our results suggested a stronger foamability at a lower consolidation agent concentration, while a longer half-life period of foam and settling time of solid particles at a larger consolidation agent concentration were observed. Bubbles suspended independently in the liquid phase, with sizes varying from 10 to 100 μm, smaller than that of the conventional foam, suggesting a significant enhancement of foam dispersity and stability. The plugging rate was close to 90% when the temperature was as high as 300 °C, demonstrating a well-accepted plugging effect under high temperatures. A larger pore volume injection of TPF yielded a higher EOR in parallel cores, which substantiated the effectiveness of the three-phase foam system in sealing high-permeability channels.

Funder

National Natural Science Foundation of China

Science Foundation of China University of Petroleum, Beijing

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3