Multi-Scale Safety Helmet Detection Based on SAS-YOLOv3-Tiny

Author:

Cheng Rao,He Xiaowei,Zheng Zhonglong,Wang Zhentao

Abstract

In the practical application scenarios of safety helmet detection, the lightweight algorithm You Only Look Once (YOLO) v3-tiny is easy to be deployed in embedded devices because its number of parameters is small. However, its detection accuracy is relatively low, which is why it is not suitable for detecting multi-scale safety helmets. The safety helmet detection algorithm (named SAS-YOLOv3-tiny) is proposed in this paper to balance detection accuracy and model complexity. A light Sandglass-Residual (SR) module based on depthwise separable convolution and channel attention mechanism is constructed to replace the original convolution layer, and the convolution layer of stride two is used to replace the max-pooling layer for obtaining more informative features and promoting detection performance while reducing the number of parameters and computation. Instead of two-scale feature prediction, three-scale feature prediction is used here to improve the detection effect about small objects further. In addition, an improved spatial pyramid pooling (SPP) module is added to the feature extraction network to extract local and global features with rich semantic information. Complete-Intersection over Union (CIoU) loss is also introduced in this paper to improve the loss function for promoting positioning accuracy. The results on the self-built helmet dataset show that the improved algorithm is superior to the original algorithm. Compared with the original YOLOv3-tiny, the SAS-YOLOv3-tiny has significantly improved all metrics (including Precision (P), Recall (R), Mean Average Precision (mAP), F1) at the expense of only a minor speed while keeping fewer parameters and amounts of calculation. Meanwhile, the SAS-YOLOv3-tiny algorithm shows advantages in accuracy compared with lightweight object detection algorithms, and its speed is faster than the heavyweight model.

Funder

National Natural Science Foundation of Chin

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Safety Helmets Using YOLOv5s Model;2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS);2024-07-10

2. Safety Helmet Detection in Electrical Power Scenes based on Improved Lightweight YOLOv8;Journal of Physics: Conference Series;2024-07-01

3. HR-YOLO: A Multi-Branch Network Model for Helmet Detection Combined with High-Resolution Network and YOLOv5;Electronics;2024-06-10

4. Safety Helmet Detection: Adding Attention Mechanism to Yolov8 to Improve Detection Accuracy;2024 7th International Conference on Artificial Intelligence and Big Data (ICAIBD);2024-05-24

5. Crowd Abnormal Behaviour Detection and Comparative Analysis using YOLO Network;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3