Isolation and Characterization of Oil-Degrading Enterobacter sp. from Naturally Hydrocarbon-Contaminated Soils and Their Potential Use against the Bioremediation of Crude Oil

Author:

Ejaz MukkaramORCID,Zhao Baowei,Wang XiukangORCID,Bashir SafdarORCID,Haider Fasih Ullah,Aslam Zubair,Khan Muhammad ImranORCID,Shabaan Muhammad,Naveed Muhammad,Mustafa AdnanORCID

Abstract

The contamination of crude oil in soil matrices is a persistent problem with negative repercussions because of the recalcitrant, hazardous, and mutagenic properties of its constituents. To mitigate the effect of crude oil contamination in soil, the use of microorganisms is a cheap and feasible option. In the current study, bacterial species from numerous polluted oil field surfaces were isolated and examined for their ability to degrade crude oil. Random soil samples polluted with hydrocarbons were collected and various bacterial isolates were isolated. Results revealed that 40% of total isolates had potential use for hydrocarbon biodegradation, the synthesis of exopolysaccharides and the solubilization of phosphorous. Following isolation and characterization to degrade crude oil, a pot trial was conducted using maize inoculated with the four best strains—i.e., S1 (PMEL-63), S2 (PMEL-67), S3 (PMEL-80), and S4 (PMEL-79)—in artificially hydrocarbon-polluted soil with concentrations of crude oil of 0, 1000, and 2000 ppm. Results revealed that S4 (PMEL-79) had significant potential to degrade hydrocarbon in polluted soils. The root length, shoot length, and fresh biomass of maize were increased by 65%, 45%, and 98%, respectively, in pots inoculated with S4 (PMEL-79) Enterobacter cloacae subsp., whereas the lowest root length was observed where no strain was added and the concentration of crude oil was at maximum. Moreover, S4 (PMEL-79) Enterobacter cloacae subsp. was found to be the most effective strain in degrading crude oil and increasing maize growth under polluted soil conditions. It was concluded that the isolation of microorganisms from oil-contaminated sites should be considered in order to identify the most effective microbial consortium for the biodegradation of naturally hydrocarbon-contaminated soils.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3