Estimation of Mode I Fracture of U-Notched Polycarbonate Specimens Using the Equivalent Material Concept and Strain Energy Density

Author:

Albinmousa JafarORCID,AlSadah Jihad,Hawwa Muhammad A.,Al-Qahtani Hussain M.

Abstract

Polycarbonate (PC) has a wide range of applications in the electronic, transportation, and biomedical industries. In addition, investigation on the applicability to use PC in superstrate photovoltaic modules is ongoing research. In this paper, PC is envisioned to be used as a material for structural components in renewable energy systems. Usually, structural components have geometrical irregularities, i.e., notches, and are subjected to severe mechanical loading. Therefore, the structural integrity of these components shall consider fracture analysis on notched specimens. In this paper, rectangular PC specimens were machined with straight U-notches having different radii and depths. Eight different notch radii with a depth of 6.0 mm were tested. In addition, three notch depths with a radius of 3.5 mm were considered. Quasi-static fracture tests were performed under displacement-controlled loading with a speed of 5 mm/min. Digital image correlation technique was used to capture the strain fields for un-notched and notched specimens. It was assumed that fracture occurs at the onset of necking. The equivalent material concept (EMC) along with the strain energy density criterion (SED) were employed to estimate the fracture load. The EMC-SED combination is shown to be an effective and practical tool for estimating the fracture load of U-notched PC specimens.

Funder

King Abdulaziz City for Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3