Human Health Impact Analysis of Contaminant in IoT-Enabled Water Distributed Networks

Author:

Shahra Essa Q.ORCID,Wu WenyanORCID,Gomez Roberto

Abstract

This paper aims to assess and analyze the health impact of consuming contaminated drinking water in a water distributed system (WDS). The analysis was based on qualitative simulation performed in two different models named hydraulic and water quality in a WDS. The computation focuses on quantitative analysis for chemically contaminated water impacts by analyzing the dose level in various locations in the water network and the mass of the substance that entered the human body. Several numerical experiments have been applied to evaluate the impact of water pollution on human life. They analyzed the impact on human life according to various factors, including the location of the injected node (pollution occurrence) and the ingested dose level. The results show a significant impact of water contaminant on human life in multiple areas in the water network, and the level of this impact changed from one location to another in WDSs based on several factors such as the location of the pollution occurrence, the contaminant concentration, and the dose level. In order to reduce the impact of this contaminant, water quality sensors have been used and deployed on the water network to help detect this contaminant. The sensors were optimally deployed based on the time-detection of water contamination and the volume of polluted water consumed. Numerical experiments were carried out to compare water pollution’s impact with and without using water quality sensors. The results show that the health impact was reduced by up to 98.37% by using water quality sensors.

Funder

European Union’s Horizon 2020 research and innovation programme Under the Marie Skłodowska-Curie–Innovative Training Networks (ITN)- IoT4Win-Internet of Things for Smart Water Innovative Network

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart waterborne disease control for a scalable population using biodynamic model in IoT network;Computers in Biology and Medicine;2024-10

2. IOT Enabled Water Distribution System for Textile Dyeing Industry;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

3. EPANET INP Code for Incomplete Mixing Model in Cross Junctions for Water Distribution Networks;Water;2023-12-12

4. Enhancing Leak Detection Accuracy in Water Distribution Networks Using SVM-CNN-GT Algorithm;2023 International Conference on Electrical, Computer and Energy Technologies (ICECET);2023-11-16

5. Real-Time Multi-Class Classification of Water Quality Using MLP and Ensemble Learning;Proceedings of Eighth International Congress on Information and Communication Technology;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3