Development of Multi-Axis Crank Linkage Motion System for Synchronized Flight Simulation with VR Immersion

Author:

Pan Cheng-Tang,Sun Pei-Yuan,Li Hao-Jan,Hsieh Cheng-Hsuan,Hoe Zheng-Yu,Shiue Yow-LingORCID

Abstract

This paper developed a rotatable multi-axis motion platform combined with virtual reality (VR) immersion for flight simulation purposes. The system could simulate the state of the flight operation. The platform was mainly comprised of three crank linkage mechanisms to replace an expensive six degrees of freedom (DoF) Stewart platform. Then, an independent subsystem which could rotate ±180° was installed at the center of the platform. Therefore, this platform exhibited 4-DoF movement, such as heave, roll, pitch, and yaw. In the servo motor control unit, Visual Studio C# was applied as the software to establish a motion control system to interact with the motion controller and four sets of servo motors. Ethernet Control Automation Technology (EtherCAT) was utilized to communicate the commands and orders between a PC and each servo motor. The optimum controller parameters of this system were obtained using Simulink simulation and verified by experiment. The multiple sets of servo motors and crank linkage mechanisms were synchronized with flight VR imagery. For VR imagery, the software Unity was used to design the flying digital content. The controller was used to transmit the platform’s spatial information to meet the direction of the pilot commands and to compensate the direction of the deviation in spatial coordinates. To achieve synchronized response and motion with respect to the three crank linkage mechanism platform and VR imagery on the tester’s goggle view, the relation of the spatial coordinate of VR imagery and three crank linkage mechanisms was transformed to angular displacement, speed and acceleration which were used to command the motor drive system. As soon as the position of the VR imagery changed, the computer instantly synchronized the VR imagery information to the multi-axis platform and performed multi-axis dynamic motion synchronously according to its commanded information. The testers can thus immerse in the VR image environment by watching the VR content, and obtain a flying experience.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. A Platform with Six Degrees of Freedom

2. Structural Kinematics of in Parallel Actuated Robot-Arms;Hurt;ASME J. Mech. Transm. Autom. Des.,1983

3. Development of a digitally-controlled three-axis earthquake shake table;Ammanagi;Curr. Sci.,2006

4. Dynamics of a 3-DOF parallel mechanism used for orientation applications

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3