The CIPCA-BPNN Failure Prediction Method Based on Interval Data Compression and Dimension Reduction

Author:

Yang Linchao,Jia Guozhu,Wei Fajie,Chang Wenbing,Li Chen,Zhou ShenghanORCID

Abstract

This paper proposes a complete-information-based principal component analysis (CIPCA)-back-propagation neural network (BPNN)_ fault prediction method using real unmanned aerial vehicle (UAV) flight data. Unmanned aerial vehicles are widely used in commercial and industrial fields. With the development of UAV technology, it is imperative to diagnose and predict UAV faults and improve their safety and reliability. The data-driven fault prediction method provides a basis for UAV fault prediction. A UAV is a typical complex system. Its flight data is a kind of typical high-dimensional large sample dataset, and traditional methods cannot meet the requirements of data compression and dimensionality reduction at the same time. The method used interval data to compress UAV flight data, used CIPCA to reduce the dimensionality of the compressed data, and then used a back propagation (BP) neural network to predict UAV failure. Experimental results show that the CIPCA-BPNN method had obvious advantages over the traditional principal component analysis (PCA)-BPNN method and could accurately predict a failure about 9 s before the UAV failure occurred.

Funder

National Natural Science Foundation of China

Technical Research Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3