Abstract
This paper proposes a complete-information-based principal component analysis (CIPCA)-back-propagation neural network (BPNN)_ fault prediction method using real unmanned aerial vehicle (UAV) flight data. Unmanned aerial vehicles are widely used in commercial and industrial fields. With the development of UAV technology, it is imperative to diagnose and predict UAV faults and improve their safety and reliability. The data-driven fault prediction method provides a basis for UAV fault prediction. A UAV is a typical complex system. Its flight data is a kind of typical high-dimensional large sample dataset, and traditional methods cannot meet the requirements of data compression and dimensionality reduction at the same time. The method used interval data to compress UAV flight data, used CIPCA to reduce the dimensionality of the compressed data, and then used a back propagation (BP) neural network to predict UAV failure. Experimental results show that the CIPCA-BPNN method had obvious advantages over the traditional principal component analysis (PCA)-BPNN method and could accurately predict a failure about 9 s before the UAV failure occurred.
Funder
National Natural Science Foundation of China
Technical Research Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献