Investigation of Integral and Differential Characteristics of Variatropic Structure Heavy Concretes by Ultrasonic Methods

Author:

Mailyan Levon R.,Stel’makh Sergey A.,Shcherban’ Evgenii M.ORCID,Khalyushev Alexander K.,Smolyanichenko Alla S.,Sysoev Alexander K.,Parinov Ivan A.,Cherpakov Alexander V.ORCID

Abstract

The article develops methods and methodology for experimental studies of centrifuged and vibro-centrifuged concrete products of annular cross-section. They assess the real variatropy of the structure and confirm the correctness of the accepted research. An original technique for experimental studies of the variatropy of the cross-sections of vibrated, centrifuged and vibro-centrifuged concretes is proposed to determine their integral (common) and differential (differing in layers) strength and strain characteristics and deformation diagrams. It has been proved that with vibro-centrifugation it becomes possible to obtain concretes with improved structure and higher characteristics compared with centrifugation and vibration techniques. Experimental studies of the differential characteristics of centrifuged and vibro-centrifuged concretes under compression and tension revealed that the outer layer of concrete had the best characteristics after centrifugation and vibro-centrifugation, and the inner layer had the worst ones. The three-layer model of the variatropic structure for centrifuged and vibro-centrifuged concrete has been experimentally confirmed. The concrete of the outer layers had the highest strength and modulus of elasticity and the least deformability; the concrete of the inner layers had the lowest strength and modulus of elasticity and the highest deformability; and the concrete of the middle layers had average characteristics. The deformation diagrams of centrifuged and vibro-centrifuged concretes were also differentiated by layers, confirming the variatropy of the structure of such concretes. The deformation diagrams for the outer concrete layer demonstrated the highest strength; the diagrams for the inner concrete layer showed the lowest strength; and the diagrams for the middle concrete layer corresponded to mean characteristics.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

1. Reinforced Concrete Supports of the Electric Contact Network. Design, Operation, Diagnostics;Podolsky,2007

2. High-quality energy-saving and competitive building materials, products and structures;Suleimanova;Bull. BSTU Named VG Shukhov.,2017

3. Fundamentals of Concrete Physics;Akhverdov,1981

4. Investigation on micro-structure of self-compacting concrete modified by recycled grinded tire rubber based on X-ray computed tomography technology

5. A study of two image-recognition algorithms for the classification of flaws in a test object according to its digital image

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3