Abstract
A hybrid air-conditioning system has been proposed by integrating an indirect evaporative pre-cooling unit. In the proposed system, the room exhaust air is employed in the indirect evaporative cooler (IEC) to pre-condition the ambient intake air. The mathematical formulation has been judiciously established for the pre-cooling IEC. The validation of the numerical model has been conducted by comparing the simulated results with the experimental data in terms of the outlet temperature and the heat flux along the heat exchanger surface. The pre-cooling performance of the IEC is theoretically investigated for the climate in representative cities selected from five different climate zones. The psychrometric illustration of the air conditioning variation has indicated that the ambient air can be pre-cooled and pre-dehumidified through the IEC. The possibility of water vapor condensation depends on the humidity ratio of the ambient intake air. The simulation result demonstrates the capability of the pre-cooling IEC to fulfill part of the cooling load of the ambient intake air resulting in a marked energy saving potential.
Funder
Fundamental Research Funds for the Central Universities
China Postdoctoral Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献