A Graph Theory-Based Method for Regional Integrated Energy Network Planning: A Case Study of a China–U.S. Low-Carbon Demonstration City

Author:

Chen ,Zhu

Abstract

With the significant attention on global climate change, regional integrated energy systems (RIES) in low-carbon city planning has become one of the most important ways for global cities to achieve the goal of energy conservation and emission reduction. However, the planning strategy used in the primary stage of RIES establishment will greatly affect the system economy and environment. In view of the lack of planning guidance mechanisms for the large-scale RIES in China, a method for RIES preliminary overall planning, focused on energy types and use, is proposed in this paper. A graph theory-based mathematical optimal model was established with the lifetime costs of the whole system as the economic goal, and an improved Prim algorithm was put forward to solve the costs of the transmission and distribution network with the dynamic weight set of pipeline flow. The model was solved by an algorithm based on the idea of a dynamic minimum spanning tree and optimal path planning. The model and method were applied in a China–U.S. low-carbon demonstration city to verify feasibility and validity. The results could help us to comprehensively integrate regional energy and accurately plan future cities.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference42 articles.

1. BP Statistical Review of World Energy 2019,2019

2. Global surface temperature;Sánchez-Lugo,2019

3. World Energy Outlook 2008,2008

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3