Coordinated Energy Management for Micro Energy Systems Considering Carbon Emissions Using Multi-Objective Optimization

Author:

Xing ,Lin ,Tan ,Ju

Abstract

To promote the utilization of distributed resources, this paper proposes a concept of a micro energy system (MES) and its core structure with energy production, conversion, and storage devices. In addition, the effect of demand–response on the operation of a MES is studied. Firstly, based on uncertainties of a MES, a probability distribution model is introduced. Secondly, with the objectives of maximizing operating revenue, and minimizing operational risk and carbon emissions, a multi-objective coordinated dispatching optimization model was constructed. To solve this model, this paper linearizes objective functions and constraints via fuzzy satisfaction theory, then establishes the input–output matrix of the model and calculates the optimal weight coefficients of different objective functions via the rough set method. Next, a comprehensive dispatching optimization model was built. Finally, data from a MES in Longgang commercial park, Shenzhen City, were introduced for a case study, and the results show that: (1) A MES can integrate different types of energy, such as wind, photovoltaics, and gas. A multi-energy cycle is achieved via energy conversion and storage devices, and different energy demands are satisfied. Demand–response from users in a MES achieves the optimization of source–load interaction. (2) The proposed model gives consideration to the multi-objectives of operating revenue, operational risk, and carbon emissions, and its optimal strategy is obtained by using the proposed solution algorithm. (3) Sensitivity analysis results showed that risks can be avoided, to varying degrees, via reasonable setting of confidence. Price-based demand–response and maximum total emission allowances can be used as indirect factors to influence the energy supply structure of a MES. In summary, the proposed model and solution algorithm are effective tools for different decision makers to conceive of dispatching strategies for different interests.

Funder

China Postdoctoral Science Foundation

Beijing Social Science Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference22 articles.

1. The Third Industrial Revolution: How Lateral Power is Transforming Energy, the Economy, and the World;Rifkin,2011

2. Dynamic pricing for decentralized energy trading in micro-grids

3. An improved energy flow calculation method for integrated electricity and natural gas system;Zhao;Trans. Chin. Electrotech. Soc.,2018

4. Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response

5. Microgrids energy management systems: A critical review on methods, solutions, and prospects;Muhammad;Appl. Energy,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3