The Effect of High Occupancy Density on IAQ, Moisture Conditions and Energy Use in Apartments

Author:

Mjörnell KristinaORCID,Johansson Dennis,Bagge Hans

Abstract

Apartments built in Sweden during the record years 1961–1975 with the aim to remedy the housing shortage and abolish poor standards, were designed for a normal-sized family of 2–4 persons. The mechanical ventilation system, if existing, was primarily designed to ensure an air exchange in the apartment according to Swedish building regulations. During the last few years, the number of overcrowded apartments has increased due to housing shortage in general but also due to migration. Another aspect is that the ventilation in many apartments built during the record years is already insufficient at normal occupant load. The question is how doubling or tripling the number of occupants and thus, the moisture load will affect the risk of bad air quality and moisture damage. To find out, simulations were made to estimate whether it is possible to obtain sufficient air quality and low risk of moisture damage by only increasing the ventilation rates in existing systems or introducing new ventilation systems with and without heat recovery and what the consequence would be in terms of the additional energy demand. Measurements from earlier studies of CO2 and moisture supply in Swedish apartment buildings were used as input data.

Funder

Energimyndigheten

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. Calculation of the Need of Housing Until 2025,2017

2. Trångboddheten i Storstadsregionerna,2016

3. Undersökningarna av Levnadsförhållanden (ULF), Statistics Sweden, Stockholmhttp://www.scb.se

4. https://hurvibor.se/hur-vi-bor/bostadsyta/

5. BETSI Study—Buildings’ Energy Use, Technical Status and Indoor Environment,2009

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3