Data Imputation in Wireless Sensor Networks Using a Machine Learning-Based Virtual Sensor

Author:

Matusowsky MichaelORCID,Ramotsoela Daniel T.ORCID,Abu-Mahfouz Adnan M.ORCID

Abstract

Data integrity in wireless sensor networks (WSN) is very important because incorrect or missing values could result in the system making suboptimal or catastrophic decisions. Data imputation allows for a system to counteract the effect of data loss by substituting faulty or missing sensor values with system-defined virtual values. This paper proposes a virtual sensor system that uses multi-layer perceptrons (MLP) to impute sensor values in a WSN. The MLP was trained using a genetic algorithm which efficiently reached an optimal solution for each sensor node. The system was able to successfully identify and replace physical sensor nodes that were disconnected from the network with corresponding virtual sensors. The virtual sensors imputed values with very high accuracies when compared to the physical sensor values.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Virtual sensor-based proxy for black carbon estimation in IoT platforms;Internet of Things;2024-10

2. Hardwarely Handling Transmission Data Loss in a Low-Cost WiFi IoT Architecture for Energy and Environment Monitoring in a University Campus;2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET);2024-05-16

3. Comparison of Neural Network Topologies for Sensor Virtualisation in BEV Thermal Management;SAE Technical Paper Series;2024-04-09

4. Handling WSN Communication Faults at the Edge with Confidence Attribution for Data Imputation;2023 IEEE 9th World Forum on Internet of Things (WF-IoT);2023-10-12

5. Improvements to Data Reconstruction in IoT Sensor Networks Under Realistic Conditions;2023 16th International Conference on Signal Processing and Communication System (ICSPCS);2023-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3