Abstract
The large spread of Distributed Energy Resources (DERs) and the related cyber-security issues introduce the need for monitoring. The proposed work focuses on an anomaly detection strategy based on the physical behavior of the industrial process. The algorithm extracts some measures of the physical parameters of the system and processes them with a neural network architecture called autoencoder in order to build a classifier making decisions about the behavior of the system and detecting possible cyber-attacks or faults. The results are quite promising for a practical application in real systems.
Subject
Control and Optimization,Computer Networks and Communications,Instrumentation
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献