Climatic Aridity Shapes Post-Fire Interactions between Ceanothus spp. and Douglas-Fir (Pseudotsuga menziesii) across the Klamath Mountains

Author:

Cinoğlu Damla,Epstein Howard E.ORCID,Tepley Alan J.,Anderson-Teixeira Kristina J.,Thompson Jonathan R.,Perakis Steven S.

Abstract

Climate change is leading to increased drought intensity and fire frequency, creating early-successional landscapes with novel disturbance–recovery dynamics. In the Klamath Mountains of northwestern California and southwestern Oregon, early-successional interactions between nitrogen (N)-fixing shrubs (Ceanothus spp.) and long-lived conifers (Douglas-fir) are especially important determinants of forest development. We sampled post-fire vegetation and soil biogeochemistry in 57 plots along gradients of time since fire (7–28 years) and climatic water deficit (aridity). We found that Ceanothus biomass increased, and Douglas-fir biomass decreased with increasing aridity. High aridity and Ceanothus biomass interacted with lower soil C:N more than either factor alone. Ceanothus biomass was initially high after fire and declined with time, suggesting a large initial pulse of N-fixation that could enhance N availability for establishing Douglas-fir. We conclude that future increases in aridity and wildfire frequency will likely limit post-fire Douglas-fir establishment, though Ceanothus may ameliorate some of these impacts through benefits to microclimate and soils. Results from this study contribute to our understanding of the effects of climate change and wildfires on interspecific interactions and forest dynamics. Management seeking to accelerate forest recovery after high-severity fire should emphasize early-successional conifer establishment while maintaining N-fixing shrubs to enhance soil fertility.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3