Kinematic and Dynamic Scaling of Copepod Swimming

Author:

Svetlichny LeonidORCID,Larsen Poul S.,Kiørboe Thomas

Abstract

Calanoid copepods have two swimming gaits, namely cruise swimming that is propelled by the beating of the cephalic feeding appendages and short-lasting jumps that are propelled by the power strokes of the four or five pairs of thoracal swimming legs. The latter may be 100 times faster than the former, and the required forces and power production are consequently much larger. Here, we estimated the magnitude and size scaling of swimming speed, leg beat frequency, forces, power requirements, and energetics of these two propulsion modes. We used data from the literature together with new data to estimate forces by two different approaches in 37 species of calanoid copepods: the direct measurement of forces produced by copepods attached to a tensiometer and the indirect estimation of forces from swimming speed or acceleration in combination with experimentally estimated drag coefficients. Depending on the approach, we found that the propulsive forces, both for cruise swimming and escape jumps, scaled with prosome length (L) to a power between 2 and 3. We further found that power requirements scales for both type of swimming as L3. Finally, we found that the cost of transportation (i.e., calories per unit body mass and distance transported) was higher for swimming-by-jumping than for cruise swimming by a factor of 7 for large copepods but only a factor of 3 for small ones. This may explain why only small cyclopoid copepods can afford this hydrodynamically stealthy transportation mode as their routine, while large copepods are cruise swimmers.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference91 articles.

1. The Orders of Copepods;Huys,1991

2. Copepod phylogeny: A reconsideration of Huys & Boxshall’s ‘parsimony versus homology’;Ho;Hydrobiologia,1994

3. On the feeding mechanism of the copepods Calanus finmarchicus and Diaptomus gracialis;Cannon;Br. J. Exp. Biol.,1928

4. Der Fangapparat von Diaptomus

5. The Swimming and Feeding of certain Calanoid Copepods.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3