Abstract
Ventilation for underground carparks is critical to indoor air quality (IAQ) due to carbon monoxide (CO) emissions from cars. The IAQ within a multi-level underground carpark of a shopping mall has been investigated using computational fluid dynamics (CFD) model based on ANSYS-FLUENT (18.1) software. The effects of car engines types, porosity of supply and exhaust air louvers and ventilation flow rates on IAQ were examined. A mesh sensitivity study was conducted and the CFD model was validated against the fully mixed mathematical formulations of IAQ with a maximum difference in values of 1.5 ppm and an error of 3.4%. The results showed that the ventilation system must be operated at ACH value of more than 2.7 in order to meet the required CO concentration of 50 ppm within the carpark and should be based on running cars within each level rather than the parking capacity of each level. Porosity of louvers affected air flow distribution between parking levels and led to higher dilution of CO. Therefore, modelling a multilevel underground carpark requires closer attention to cross level interaction across Ramps which could affect the CO concentration within a given level.
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献