Abstract
The second-order velocity structure function statistics have been analysed using a DNS database of statistically planar turbulent premixed flames subjected to unburned gas forcing. The flames considered here represent combustion for moderate values of Karlovitz number from the wrinkled flamelets to the thin reaction zones regimes of turbulent premixed combustion. It has been found that the second-order structure functions exhibit the theoretical asymptotic scalings in the dissipative and (relatively short) inertial ranges. However, the constant of proportionality for the theoretical asymptotic variation for the inertial range changes from one case to another, and this value also changes with structure function orientation. The variation of the structure functions for small length scale separation remains proportional to the square of the separation distance. However, the constant of proportionality for the limiting behaviour according to the separation distance square remains significantly different from the theoretical value obtained in isotropic turbulence. The disagreement increases with increasing turbulence intensity. It has been found that turbulent velocity fluctuations within the flame brush remain anisotropic for all cases considered here and this tendency strengthens towards the trailing edge of the flame brush. It indicates that the turbulence models derived based on the assumptions of homogeneous isotropic turbulence may not be fully valid for turbulent premixed flames.
Funder
Engineering and Physical Sciences Research Council
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Reference32 articles.
1. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number;Kolmogorov;Dokl. Akad. Nauk SSSR,1941
2. Turbulent Flows;Pope,2000
3. The Legacy of A. N. Kolmogorov;Frisch,1995
4. High-order velocity structure functions in turbulent shear flows
5. THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献