Abstract
The main objective of this study is to develop a semi-analytical formulation for the radiation problem of a fully immersed spheroid in a liquid field of infinite depth. The term “spheroid” refers herein to the oblate geometry of arbitrary eccentricity and to the axisymmetric case, where the axis of symmetry is normal to the free surface. The proposed numerical approach is based on the method of image singularities, and it enables the accurate and fast calculation of the hydrodynamic coefficients for the translational degrees of freedom of the oblate spheroid. The excellent agreement of the results, with those of other investigators for the limiting case of the sphere and with those obtained using a respected boundary integral equation code, demonstrates the accuracy of the proposed methodology. Finally, extensive calculations are presented, illustrating the direct impact of the immersion depth and the slenderness of the spheroid on the hydrodynamic coefficients.
Funder
State Scholarships Foundation
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献