Abstract
Inertial focusing conditions of fluorescent polystyrene spherical particles are studied at the pointwise level along their pathlines. This is accomplished by an algorithm that calculates a degree of spreading function of the particles’ trajectories taking streaklines images as raw data. Different confinement ratios of the particles and flow rates are studied and the results are presented in state diagrams showing the focusing degree of the particles in terms of their position within a curve of an asymmetric serpentine and the applied flow rate. In addition, together with numerical simulation results, we present empirical evidence that the preferred trajectories of inertially focused spheres are contained within Dean vortices’ centerlines. We speculate about the existence of a new force, never postulated before, to explain this fact.
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献