A Probabilistic Approach to Analyze Wind Energy Curtailment in Non-Interconnected Greek Islands Based on Typical Wind Year Meteorological Data

Author:

Caralis George,Kontzilas Alexandros,Peijin Yang,Chasapogiannis Petros,Kotroni VassilikiORCID,Lagouvardos Konstantinos,Zervos Arthouros

Abstract

Wind energy and photovoltaic solar energy (PV) are the most mature renewable energy technologies and are widely used to increase renewable energy penetration in non-interconnected Greek islands. However, their penetration is restricted due to technical issues related to the safe operation of autonomous power systems, the current conventional power infrastructure and their variable power output. In this framework, renewable energy curtailment is sometimes a necessity to ensure the balance between demand and supply. The ability of autonomous power systems to absorb wind and PV power is related to the load demand profile, the type and the flexibility of conventional power plants, the size of power system and the spatial dispersion of wind farms. In this connection, a probabilistic approach for estimating wind energy curtailment is thoroughly applied in most of the autonomous power systems in Greece, using detailed information about load demand and conventional power supply. In parallel, high resolution mesoscale model-based hourly wind data for typical meteorological wind year are used to represent the wind features in all the sites of interest. Technical constraints imposed by the local power system operator, related to the commitment of conventional power plants and the load dispatch strategies are taken into account to maximize renewable energy penetration levels. Finally, application for wide ranges of wind and PV capacity and the thorough analysis of the parameters leads to the presentation of comparable results and conclusions, which could be widely used to predict wind energy curtailment in non-interconnected power systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3