Clinical Feasibility of Deep Learning-Based Image Reconstruction on Coronary Computed Tomography Angiography

Author:

Koo Seul Ah1,Jung Yunsub2,Um Kyoung A2,Kim Tae Hoon1ORCID,Kim Ji Young1,Park Chul Hwan1

Affiliation:

1. Department of Radiology and The Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea

2. Research Team, GE Healthcare Korea, Seoul 04637, Republic of Korea

Abstract

This study evaluated the feasibility of deep-learning-based image reconstruction (DLIR) on coronary computed tomography angiography (CCTA). By using a 20 cm water phantom, the noise reduction ratio and noise power spectrum were evaluated according to the different reconstruction methods. Then 46 patients who underwent CCTA were retrospectively enrolled. CCTA was performed using the 16 cm coverage axial volume scan technique. All CT images were reconstructed using filtered back projection (FBP); three model-based iterative reconstructions (MBIR) of 40%, 60%, and 80%; and three DLIR algorithms: low (L), medium (M), and high (H). Quantitative and qualitative image qualities of CCTA were compared according to the reconstruction methods. In the phantom study, the noise reduction ratios of MBIR-40%, MBIR-60%, MBIR-80%, DLIR-L, DLIR-M, and DLIR-H were 26.7 ± 0.2%, 39.5 ± 0.5%, 51.7 ± 0.4%, 33.1 ± 0.8%, 43.2 ± 0.8%, and 53.5 ± 0.1%, respectively. The pattern of the noise power spectrum of the DLIR images was more similar to FBP images than MBIR images. In a CCTA study, CCTA yielded a significantly lower noise index with DLIR-H reconstruction than with the other reconstruction methods. DLIR-H showed a higher SNR and CNR than MBIR (p < 0.05). The qualitative image quality of CCTA with DLIR-H was significantly higher than that of MBIR-80% or FBP. The DLIR algorithm was feasible and yielded a better image quality than the FBP or MBIR algorithms on CCTA.

Publisher

MDPI AG

Subject

General Medicine

Reference33 articles.

1. Diagnostic Performance of Coronary Angiography by 64-Row CT;Miller;N. Engl. J. Med.,2008

2. Assessment of coronary artery disease by cardiac computed tomography: A scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology;Budoff;Circulation,2006

3. Use of coronary computed tomography angiography in clinical practice—Single centre experience in Switzerland in light of current recommendations based on pretest probability considerations;Neurauter;Swiss Med. Wkly.,2019

4. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography;Einstein;JAMA,2007

5. Kaller, M.O., and An, J. (2022). StatPearl, StatPearls Publishing.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3