Inference on a Multi-Patch Epidemic Model with Partial Mobility, Residency, and Demography: Case of the 2020 COVID-19 Outbreak in Hermosillo, Mexico

Author:

Akuno Albert Orwa1ORCID,Ramírez-Ramírez L. Leticia1ORCID,Espinoza Jesús F.2ORCID

Affiliation:

1. Departamento de Probabilidad y Estadística, Centro de Investigación en Matemáticas A.C., Jalisco s/n, Colonia Valenciana, Guanajuato C.P. 36023, Gto, Mexico

2. Departamento de Matemáticas, Universidad de Sonora, Rosales y Boulevard Luis Encinas, Hermosillo C.P. 83000, Sonora, Mexico

Abstract

Most studies modeling population mobility and the spread of infectious diseases, particularly those using meta-population multi-patch models, tend to focus on the theoretical properties and numerical simulation of such models. As such, there is relatively scant literature focused on numerical fit, inference, and uncertainty quantification of epidemic models with population mobility. In this research, we use three estimation techniques to solve an inverse problem and quantify its uncertainty for a human-mobility-based multi-patch epidemic model using mobile phone sensing data and confirmed COVID-19-positive cases in Hermosillo, Mexico. First, we utilize a Brownian bridge model using mobile phone GPS data to estimate the residence and mobility parameters of the epidemic model. In the second step, we estimate the optimal model epidemiological parameters by deterministically inverting the model using a Darwinian-inspired evolutionary algorithm (EA)—that is, a genetic algorithm (GA). The third part of the analysis involves performing inference and uncertainty quantification in the epidemic model using two Bayesian Monte Carlo sampling methods: t-walk and Hamiltonian Monte Carlo (HMC). The results demonstrate that the estimated model parameters and incidence adequately fit the observed daily COVID-19 incidence in Hermosillo. Moreover, the estimated parameters from the HMC method yield large credible intervals, improving their coverage for the observed and predicted daily incidences. Furthermore, we observe that the use of a multi-patch model with mobility yields improved predictions when compared to a single-patch model.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference144 articles.

1. The human resources as an important factor of regional development;Int. J. Bus. Soc.,2020

2. Social economic development and the human resources management;Krypa;Acad. J. Interdiscip. Stud.,2017

3. The role of population in economic growth;Peterson;Sage Open,2017

4. Ramírez-Ramírez, L.L., Montoya, J.A., Espinoza, J.F., Mehta, C., Akuno, A.O., and Bui-Thanh, T. (2022). Use of mobile phone sensing data to estimate residence and mobility times in urban patches during the COVID-19 epidemic: The case of the 2020 outbreak in Hermosillo, Mexico. arXiv.

5. Vlad, C.A., Ungureanu, G., and Militaru, M. (2012). Human resources contribution to economic growth. Rev. Econ., 850.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3