Temporal and Spatial Variations in Drought and Its Impact on Agriculture in China

Author:

Liu Wen12,Zhang Yuqing3ORCID

Affiliation:

1. College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China

2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China

3. School of Geography and Planning, Huaiyin Normal University, Huai’an 223300, China

Abstract

Drought, as a widespread natural calamity, leads to the most severe agricultural losses among all such disasters. Alterations in the yield of major global agricultural products are pivotal factors influencing food prices, food security, and land use decisions. China’s rapidly expanding demand for sustenance will persist over the forthcoming decades, emphasizing the critical need for an accurate assessment of drought’s impact on food production. Consequently, we conducted a comprehensive evaluation of the drought risk in China and its repercussions on agricultural output. Additionally, we delved into the underlying factors driving changes in yield for three primary grain crops (wheat, corn, and rice), which hold particular relevance for shaping effective strategies to mitigate future drought challenges. The findings divulge that both the number of drought months (DM) and the drought magnitude index (DMI) have displayed an upward trajectory over 60 years with a correlation coefficient of 0.96. The overall severity of meteorological drought has escalated across China, and it is particularly evident in regions such as the southwest and central parts of the Huang-Huai-Hai region, the northwestern middle region, and the Xinjiang region. Conversely, there has been some relief from drought conditions in southern China and the Yangtze River Delta. Shifts in the total grain output (TGO) during this period were compared: it underwent three stages, namely “fluctuating growth” (1961–1999), then a “sharp decline” (2000–2003), followed by “stable growth” (2004–2018). Similarly, changes in the grain planting area (GPA) experienced two stages, “continuous reduction” (1961–2003) succeeded by “stable growth” (2004–2018), while maintaining an upward trend for grain yield per unit area (GY) throughout. Furthermore, it was revealed that the drought grade serves as a significant constraint on continuous expansion within China’s grain output—where the drought damage rate’s influence on the TGO outweighs that from the GY. Our research outcomes play an instrumental role in deepening our comprehension regarding how drought impacts agricultural production within China while furnishing the scientific groundwork to devise efficacious policies addressing these challenges.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference86 articles.

1. IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. A review of drought concepts;Mishra;J. Hydrol.,2010

3. Drought stress and its characteristics in China from 2001 to 2020 considering vegetation response and drought creep effect;Yin;J. Hydrol. Reg. Stud.,2024

4. Urban drought challenge to 2030 sustainable development goals;Zhang;Sci. Total Environ.,2019

5. Spatio-temporal relations between temperature and precipitation regimes: Implications for temperature-induced changes in the hydrological cycle;Zhang;Glob. Planet. Change,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3