Cross-Scale Simulation Research on the Macro/Microstructure of TC4 Alloy Wire Laser Additive Manufacturing

Author:

Wang Yongbiao,Chen Cong,Liu Xintian,Wang Jiaxin,Zhang Yang,Long Weimin,Guan Shaokang,Peng Liming

Abstract

A cross-scale model of macro-micro coupling is established for the wire laser additive manufacturing process of the TC4 titanium alloy. The model reproduces the dynamic evolution process of the molten pool shape, reveals the temperature change law in the molten pool, and simulates the microstructure and morphology of different regions of the molten pool. Finally, the model is used to quantitatively analyze the effects of process parameters (laser power, scanning speed) on the growth morphology of dendrites during solidification. The research shows that with the increase in laser power and the decrease in scanning speed, the peak temperature of the molten pool increases rapidly, and the size of the molten pool increases gradually. When the laser scanning speed is greater than 5 mm/s, the molten pool length decreases significantly. After solidification, an asymmetrically distributed equiaxed grain structure is formed at the upper part of the molten pool, the bottom of the molten pool is made up of slender columnar crystals, and the columnar-to-equiaxed transition (CET) occurs in the middle of the molten pool. With the decrease in laser power and the increase in scanning speed, the growth rate of dendrites becomes faster, the arm spacing and the overall morphology of dendrites become smaller, and the arrangement of columnar crystals have a tighter microstructure.

Funder

the National Natural Science Foundation-Youth Science Foundation Project

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3