Comparison of the Internal Fatigue Crack Initiation and Propagation Behavior of a Quenched and Tempered Steel with and without a Thermomechanical Treatment

Author:

Khayatzadeh AminORCID,Guth StefanORCID,Heilmaier MartinORCID

Abstract

Previous studies have shown that a thermomechanical treatment (TMT) consisting of cyclic plastic deformation in the temperature range of dynamic strain aging can increase the fatigue limit of quenched and tempered steels by strengthening the microstructure around non-metallic inclusions. This study considers the influence of a TMT on the shape, size and position of crack-initiating inclusions as well as on the internal crack propagation behavior. For this, high cycle fatigue tests on specimens with and without TMT were performed at room temperature at a constant stress amplitude. The TMT increased the average lifetime by about 40%, while there was no effect of the TMT on the form or size of critical inclusions. Surprisingly, no correlation between inclusion size and lifetime could be found for both specimen types. There is also no correlation between inclusion depth and lifetime, which means that the crack propagation stage covers only a small portion of the overall lifetime. The average depth of critical inclusions is considerably higher for TMT specimens indicating that the strengthening effect of the TMT is more pronounced for near-surface inclusions. Fisheye fracture surfaces around the critical inclusions could be found on all tested specimens. With increasing fisheye size, a transition from a smooth to a rather rough and wavy fracture surface could be observed for both specimen types.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3