Improved Tribocorrosion Behavior Obtained by In-Situ Precipitation of Ti2C in Ti-Nb Alloy

Author:

Gonçalves Vinícius Richieri MansoORCID,Çaha IhsanORCID,Alves Alexandra Cruz,Toptan FatihORCID,Rocha Luís AugustoORCID

Abstract

Novel in-situ Ti-based matrix composites (TMCs) were developed through the reactive hot pressing of Ti + NbC powder blends. Due to the chemical reaction that occurred in the solid-state during processing, the produced samples were composed of an Nb-rich β-Ti phase that formed a metallic matrix along with Ti2C as a reinforcing phase. By employing different proportions of Ti:NbC, the phase composition of the alloys was designed to contain different ratios of α-Ti and β-Ti. The present work investigated the corrosion and tribocorrosion behavior of the composites, compared to unreinforced Ti, in a phosphate-buffered solution (PBS) at body temperature. Corrosion tests included potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Tribocorrosion tests were carried out using a ball-on-plate tribometer with sliding performed at open circuit potential (OCP) and under anodic potentiostatic conditions. Results showed that the stabilization of the β phase in the matrix led to a decrease in the hardness. However, the formation of the in-situ reinforcing phase significantly improved the tribocorrosion behavior of the composites due to a load-carrying effect, lowering the corrosion tendency and kinetics under sliding. Furthermore, localized corrosion was not observed at the interface between the reinforcing phase and the matrix.

Funder

São Paulo Research Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3