Strength Properties of the Heat-Resistant Inconel 718 Superalloy Additively Manufactured by Direct Laser Deposition Method under Shock Compression

Author:

Savinykh Andrey S.,Garkushin Gennady V.ORCID,Razorenov Sergey V.,Atroshenko Svetlana A.,Klimova-Korsmik Olga G.,Kislov Nikita G.ORCID

Abstract

By recording and analyzing complete wave profiles using the VISAR laser interferometer, measurements of the Hugoniot elastic limit and critical fracture stresses were carried out under the spalling conditions of the heat-resistant Inconel 718 alloy, additively manufactured by direct laser deposition, at shockwave loading up to ~6.5 GPa using a light-gas gun. For comparison, similar experiments were performed with the Inconel 718 alloy made by the traditional method of vacuum induction melting. The process of the delay of an elastic compression wave during its propagation through the sample and the dependence of the spall strength on the strain before fracture in the range 105–106 s−1 were investigated. To identify the anisotropy of the strength properties of the material under study, two series of experiments were carried out on loading additively manufactured samples along and perpendicular to the direction of the deposition. The measurements performed showed that the additively manufactured Inconel 718 alloy demonstrates weak anisotropy of strength properties for both the initial and thermal-treated samples. The thermal treatment leads to a noticeable increase in the Hugoniot elastic limit and the spall strength of the samples at low strain rates. For all types of samples, there is an increase in the spall strength with an increase in the strain rate. The spall strength measured for the cast alloy practically coincides with the strength of the as-received additive alloy and is noticeably lower than the strength of the thermal-treated additive alloy over the entire range of the strain rates. The process of the decay of the elastic precursor in the cast alloy occurs much faster than in the additive one, and the minimum values of the Hugoniot elastic limit are measured for thick samples in the cast alloy.

Funder

the State Assignments

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference39 articles.

1. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials;ASM Int.,2002

2. Superalloy 718: Metallurgy and Applications;Loria,1989

3. Prediction of solidification cracking by an empirical-statistical analysis for laser cladding of Inconel 718 powder on a non-weldable substrate

4. Dissimilar laser cladding of Inconel 718 powder on A-286 substrate: Microstructural evolution

5. Additive Manufacturing of Metals: A Review;Herderick,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3