Abstract
Ultrasonic guided wave testing (UGWT) is a non-destructive testing (NDT) technique commonly used in structural health monitoring to perform wide-range inspection from a single point, thus reducing the time and effort required for NDT. However, the multi-modal and dispersive nature of guided waves makes the extraction of essential information that leads to defect detection an extremely challenging task. The purpose of this article is to give an overview of signal processing techniques used for filtering signals, isolating modes and identifying and localising defects in UGWT. The techniques are summarised and grouped according to the geometry of the studied structures. Although the reviewed techniques have led to satisfactory results, the identification of defects through signal processing remains challenging with space for improvement, particularly by combining signal processing techniques and integrating machine learning algorithms.
Subject
General Materials Science,Metals and Alloys
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献