Stress Response Behavior, Microstructure Evolution and Constitutive Modeling of 22MnB5 Boron Steel under Isothermal Tensile Load

Author:

Zhou Qian,Guo Pengcheng,Qin Feng

Abstract

22MnB5 boron steel has become one of the main choices for lightweight vehicles due to its extremely high mechanical properties. To explore the intrinsic relationship between the thermoforming process and thermo-mechanical behavior for constitutive modeling and thermoforming of vehicle structure, thermal tensile tests in wide ranges of deformation temperature (500 °C to 950 °C) and strain rate (0.01 s−1 to 10 s−1) were performed using a Gleeble-1500D thermal simulator with hot-rolled 22MnB5 boron steel. With increasing applied strain and strain rate, the flow stress increases gradually and then tends to saturation after reaching peak stress, except for that at 0.01 s−1 and 500 °C. With increasing deformation temperature, the microstructure transforms from a mixture of bainite, ferrite and pearlite to lath-shaped martensite accompanied with some residual austenite. At 950 °C, the average size of martensite decreases with increasing applied strain rate. After thermoforming with austenitizing temperature of 950 °C, lath-shaped martensite accompanied with some residual austenite is obtained in a thermoformed U-shaped structural part, resulting in a dramatical increase in tensile strength. In contrast, the tensile strength of sidewall is slightly higher than that of bottom. Based on the Arrhenius-type constitutive model, a modified constitutive model is constructed with a relative error of less than 5%, which can well describe the flow stress behavior of the studied 22MnB5 boron steel.

Funder

the National Natural Science Foundation of China

the Scientific Research Project of Hunan Provincial Department of Education

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3