Determining Alloy Nucleation Core Origin and Grain Refinement Strategy Based on the Dependence Degree of Content Difference

Author:

Hou ZibingORCID,Peng Zhiqiang,Zeng Zihang,Guo Kunhui

Abstract

What is nucleation core origin during alloy solidification, especially for equiaxed grains? Different dependence degrees of the magnitude or occurrence of element content variation could shed light on this long-standing issue in actual large ingots. Here, based on etched surface height and grayscale, element content distributions within the solid fraction in continuous casting billets and additive manufacturing samples are first obtained by only a two-dimensional surface. Then, combined with the phylogenetic trees, the rank correlation is applied to measure the dependence of content differences during initial solidification. Assessments of external dependence degrees are helpful to determine nucleation core origin and low internal dependence degree facilitates grain refinement. Moreover, in continuous casting, some nucleation cores in the central equiaxed grain zone are confirmed to originate from the edge-chilled zone and high equiaxed grain area ratio under a low superheat, which is attributed to the low ratio of temperature gradient to growth rate rather than remelting fewer cores originating from the chilled zone. In addition, the floating behavior of separated grains originating from the chilled zone can be affected by gravity force, but these grains should be more active when increasing the casting superheat that may weaken the influence of gravity to a certain extent.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3