Abstract
In this study, a regional convolutional neural network (RCNN)-based deep learning and Hough line transform (HLT) algorithm are applied to monitor corroded and loosened bolts in steel structures. The monitoring goals are to detect rusted bolts distinguished from non-corroded ones and also to estimate bolt-loosening angles of the identified bolts. The following approaches are performed to achieve the goals. Firstly, a RCNN-based autonomous bolt detection scheme is designed to identify corroded and clean bolts in a captured image. Secondly, a HLT-based image processing algorithm is designed to estimate rotational angles (i.e., bolt-loosening) of cropped bolts. Finally, the accuracy of the proposed framework is experimentally evaluated under various capture distances, perspective distortions, and light intensities. The lab-scale monitoring results indicate that the suggested method accurately acquires rusted bolts for images captured under perspective distortion angles less than 15° and light intensities larger than 63 lux.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献