Abstract
Research work on the air flow in mine workings frequently utilises computer techniques in the form of numeric simulations. However, it is very often necessary to apply simplifications when building a geometrical model. The assumption of constant model geometry on its entire length is one of the most frequent simplifications. This results in a substantial shortening of the geometrical model building process, and a concomitant shortening of the time of numerical computations; however, it is not known to what extent such simplifications worsen the accuracy of simulation results. The paper presents a new methodology that enables precise reproduction of the studied mine gallery and the obtaining of a satisfactory match between simulation results and in-situ measurements. It utilises the processing of data from laser scanning of a mine gallery, simultaneous multi-point measurements of the velocity field at selected gallery cross-sections, unique for mine conditions, and the SAS turbulence model, recently introduced to engineering analyses of flow issues.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference25 articles.
1. How to—Understand Computational Fluid Dynamics Jargon;De Souza,2005
2. Mine face ventilation: A comparison of CFD results against benchmark experiments for the CFD code validation;Wala;Min. Eng.,2007
3. Investigations of Ventilation Airflow Characteristics on a Longwall Face—A Computational Approach
4. Field and Experimental Research on Airflow Velocity Boundary Layer in Coal Mine Roadway
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献