Abstract
This paper presents a novel approach for estimating the parameters of the most frequently used static load model, which is based on the use of meteorological variables and is an alternative to the commonly used but time-consuming measurement-based approach. The presented model employs five frequently reported meteorological variables (ambient temperature, relative humidity, atmospheric pressure, wind speed, and wind direction) and the load model parameters as the independent and dependent variables, respectively. The analysis compared the load model parameters obtained by using all five meteorological variables and also when the meteorological variables with the lowest influence are omitted successively (one by one) from the model. It is recommended based on these results to use the model with the maximum accuracy, i.e., with five meteorological variables. The model was validated on a validation set of measurements, demonstrating its applicability for the estimation of load model parameters when the measurements of electrical variables for parameter identification are not available. Finally, load model parameters of the analyzed demand were estimated on the basis of only ambient temperature, and it was found that such a linear model can be used with a similar accuracy as the models with up to four meteorological variables.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis of the effect of meteorological elements on new energy power prediction based on machine learning;Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering);2023-09-07