Application of Meteorological Variables for the Estimation of Static Load Model Parameters

Author:

Jović Aleksandar S.ORCID,Korunović Lidija M.ORCID,Djokic Sasa Z.

Abstract

This paper presents a novel approach for estimating the parameters of the most frequently used static load model, which is based on the use of meteorological variables and is an alternative to the commonly used but time-consuming measurement-based approach. The presented model employs five frequently reported meteorological variables (ambient temperature, relative humidity, atmospheric pressure, wind speed, and wind direction) and the load model parameters as the independent and dependent variables, respectively. The analysis compared the load model parameters obtained by using all five meteorological variables and also when the meteorological variables with the lowest influence are omitted successively (one by one) from the model. It is recommended based on these results to use the model with the maximum accuracy, i.e., with five meteorological variables. The model was validated on a validation set of measurements, demonstrating its applicability for the estimation of load model parameters when the measurements of electrical variables for parameter identification are not available. Finally, load model parameters of the analyzed demand were estimated on the basis of only ambient temperature, and it was found that such a linear model can be used with a similar accuracy as the models with up to four meteorological variables.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference23 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the effect of meteorological elements on new energy power prediction based on machine learning;Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering);2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3