The Computed Sinusoid

Author:

Boninsegna Matteo1ORCID,McCourt Peter A. G.2ORCID,Holte Christopher Florian2

Affiliation:

1. Department of Physics, Bielefeld University, D-33501 Bielefeld, Germany

2. Faculty of Health Sciences, Institute for Medical Biology, UiT The Arctic University of Norway, 9010 Tromsø, Norway

Abstract

Hepatic sinusoids are lined with thin endothelial cells with transcellular pores, termed fenestrations. These fenestrations are open channels that connect the sinusoidal lumen to the underlying Space of Disse (SoD) and the hepatocytes of the liver parenchyma. Fenestrations range from 0.05 to 0.35 µm in diameter and cover 5–15% of the sinusoidal endothelial surface area, depending on their location along the sinusoids. The direct measurement of hemodynamic parameters, such as pressure and flow velocity, remains challenging within the narrow sinusoids. Such knowledge would increase our understanding of the physiology of the hepatic niche and possible implications in aging or diseases in which fenestrations are reduced or lost. Few simulations of liver blood flow focus on the level of the individual sinusoid, and fewer still include the transcellular pores (fenestrations) of the sinusoidal endothelium. Furthermore, none have included (i) a porosity gradient along the sinusoid wall, modeled using through-all pores rather than a porous medium, (ii) the presence of the SoD, or (iii) lymphatic drainage. Herein, computed fluid dynamics (CFD) simulations were performed using a numerical model with relevant anatomical characteristics (length, diameter, porosity, inlet/outlet pressure, and lymphatic outflow from the portal region of the SoD). The greatest contribution to luminal velocity magnitude and pressure was the overall shape of the vessel. Divergent-radius models yielded velocity magnitudes 1.5–2 times higher than constant-radius models, and pressures were 5–8% lower in the divergent-radius models compared to the constant-radius models. Porosity only modestly contributed to luminal pressure. The luminal velocity magnitude was largely unaffected by the presence or absence of lymphatic drainage. Velocity magnitudes through fenestrations were lower in higher-porosity models (20%) vs. lower-porosity models (5%) across all models (0.4–0.55-fold lower). Velocity magnitudes through the space of Disse were increased 3–4 times via the addition of lymphatic drainage to the models, while pressures were decreased by 6–12%. The flow velocity in the SoD was modified via differences in porosity, while the flow velocity in the lumens of the sinusoids was largely unaffected. The overall shape of the vessel is the single most important factor in the pressure flow behavior of the sinusoidal lumen. The flow rate over hepatocytes and the SoD is modestly affected by the distribution of porosity along the sinusoid and greatly affected by the lymphatic drainage, parameters that would be of interest for modeling the exchange of blood with the hepatic parenchyma.

Funder

Horizon 2020 MSCA ITN DeLIVER

Faculty of Health Sciences UiT

Publisher

MDPI AG

Subject

General Medicine

Reference41 articles.

1. Challenges and Opportunities in the Design of Liver-on-Chip Microdevices;Ehrlich;Annu. Rev. Biomed. Eng.,2019

2. Cogger, V.C., Hunt, N.J., and Le Couteur, D.G. (2020). The Liver, Wiley.

3. Three-Dimensional Structure of Endothelial Cells in Hepatic Sinusoids of the Rat as Revealed by the Golgi Method;Wake;Cell Tissue Res.,1988

4. Intermittence of Blood Flow in Liver Sinusoids, Studied by High-Resolution in Vivo Microscopy;MacPhee;Am. J. Physiol.—Gastrointest. Liver Physiol.,1995

5. Leukocyte Flow Dynamics in the Rat Liver Microcirculation;Komatsu;Microvasc. Res.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3