Functionalization of Na2Ca2Si3O9/Ca8Si5O18 Nanostructures with Chitosan and Terephthalaldehyde Crosslinked Chitosan for Effective Elimination of Pb(II) Ions from Aqueous Media

Author:

Al-Farraj Eida S.1,Alotaibi Abdullah N.1,Abdelrahman Ehab A.12ORCID,Saad Fawaz A.3ORCID,Rehman Khalil ur4ORCID,Algethami Faisal K.1ORCID,Shah Reem K.3

Affiliation:

1. Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia

2. Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt

3. Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia

4. Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29111, KPK, Pakistan

Abstract

Lead poses significant health risks to humans, including neurological and developmental impairments, particularly in children. Additionally, lead pollution in the environment can contaminate soil, water, and air, endangering wildlife and ecosystems. Therefore, this study reports the straightforward fabrication of Na2Ca2Si3O9/Ca8Si5O18 nanostructures (NaCaSilicate) utilizing a sol-gel technique. Additionally, the produced nanostructures underwent further modification with chitosan (CS@NaCaSilicate) and chitosan crosslinked with terephthalaldehyde (CCS@NaCaSilicate), resulting in new nanocomposite materials. These samples were developed to efficiently extract Pb(II) ions from aqueous media through complexation and ion exchange mechanisms. Furthermore, the maximum adsorption capacity for Pb(II) ions by the NaCaSilicate, CS@NaCaSilicate, and CCS@NaCaSilicate samples is 185.53, 245.70, and 359.71 mg/g, respectively. The uptake of Pb(II) ions was characterized as spontaneous, exothermic, and chemical, with the best description provided by the Langmuir equilibrium isotherm and the pseudo-second-order kinetic model. Furthermore, a 9 M hydrochloric acid solution effectively eliminated Pb(II) ions from the synthesized samples, attaining a desorption efficacy surpassing 99%. Additionally, the fabricated samples exhibited efficient reusability across five successive cycles of adsorption and desorption for capturing Pb(II) ions.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3