Cellular Uptake and Phototoxicity Optimization of Arene Ruthenium Porphyrin Derivatives

Author:

Janbeih Zeinab1,Gallardo-Villagrán Manuel23,Therrien Bruno3ORCID,Diab-Assaf Mona4,Liagre Bertrand2ORCID,Benov Ludmil1ORCID

Affiliation:

1. Biochemistry Department, Faculty of Medicine, Kuwait University, Kuwait City 12037, Kuwait

2. Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France

3. Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland

4. Doctoral School of Sciences and Technology, Lebanese University, Hadath, Beirut 21219, Lebanon

Abstract

In this study, dinuclear and tetranuclear arene ruthenium porphyrins were synthesized and assessed for their potential as photosensitizers (PSs) in photodynamic therapy (PDT) using the Colo205 colon cancer cell line as a model system. Reactive oxygen species (ROS) production, cellular uptake, impact on cell viability, and mechanisms of cell death induced by the synthesized compounds were comprehensively investigated. Our results revealed that the number of arene ruthenium units, as well as zinc (Zn) metalation of the porphyrin core, significantly influenced ROS production and increased it two-folds compared to the Zn-free analogs. The uptake of tetra-substituted Zn-porphyrins by the cancer cells increased to 2.8 nmol/106 cells compared to 0.6 nmol/106 cells of the disubstituted Zn-free and Zn-chelating porphyrins. The anticancer photo-activity of the complexes, where the percentage of metabolic activity of disubstituted Zn-porphyrins decreased to 26% when Zn was inserted, was compared to disubstituted Zn-free analogs. A further decrease in metabolic activity was observed, when the number of arene ruthenium units increased in the tetra-substituted Zn-porphyrins and tetra-substituted Zn-free compounds, reaching 4% and 14% respectively. Moreover, the percentage of apoptotic cell deaths increased to 40% when Zn was inserted into disubstituted porphyrins, compared to disubstituted Zn-free analog, and 50% when the number of arene ruthenium units increased. Overall, the tetra-substituted Zn chelating porphyrins exhibited the highest PDT efficiency, followed by the di-substituted Zn-porphyrins. These findings underscore the importance of structural design in optimizing the efficacy of arene ruthenium porphyrins as PSs for PDT, offering valuable insights for the development of targeted cancer therapeutics.

Funder

Kuwait University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3