Modeling Temperature-Dependent Thermoelectric Performance of Magnesium-Based Compounds for Energy Conversion Efficiency Enhancement Using Intelligent Computational Methods

Author:

Ibn Shamsah Sami M.1ORCID

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 31991, Saudi Arabia

Abstract

Eco-friendly magnesium-based thermoelectric materials have recently attracted significant attention in green refrigeration technology and wasted heat recovery applications due to their cost effectiveness, non-toxicity, and earth abundance. The energy conversion efficiency of these thermoelectric materials is controlled by a dimensionless thermoelectric figure of merit (TFM), which depends on thermal and electrical conductivity. The independent tuning of the electrical and thermal properties of these materials for TFM enhancement is challenging. The improvement in the TFM of magnesium thermoelectric materials through scattering and structural engineering is experimentally challenging, especially if multiple elements are to be incorporated at different concentrations and at different doping sites. This work models the TFM of magnesium-based thermoelectric materials with the aid of single-hidden-layer extreme learning machine (ELM) and hybrid genetic-algorithm-based support vector regression (GSVR) algorithms using operating absolute temperature, elemental ionic radii, and elemental concentration as descriptors. The developed TFM-G-GSVR model (with a Gaussian mapping function) outperforms the TFM-S-ELM model (with a sine activation function) using magnesium-based thermoelectric testing samples with improvements of 17.06%, 72%, and 73.03% based on correlation coefficient (CC), root mean square error (RMSE), and mean absolute error (MAE) assessment metrics, respectively. The developed TFM-P-GSVR (with a polynomial mapping function) also outperforms TFM-S-ELM during the testing stage, with improvements of 14.59%, 55.31%, and 62.86% using CC, RMSE, and MAE assessment metrics, respectively. Also, the developed TFM-G-ELM model (with a sigmoid activation function) shows superiority over the TFM-S-ELM model with improvements of 14.69%, 79.52%, and 83.82% for CC, RMSE, and MAE assessment yardsticks, respectively. The dependence of some selected magnesium-based thermoelectric materials on temperature and dopant concentration on TFM was investigated using the developed model, and the predicted patterns align excellently with the reported values. This unique performance demonstrated that the developed intelligent models can strengthen room-temperature magnesium-based thermoelectric materials for industrial and technological applications in addressing the global energy crisis.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3