Stress Reduction of a V-Based BCC Metal Hydride Bed Using Silicone Oil as a Glidant

Author:

Zheng Xin,Kong Hanyang,Chu Desheng,Hu Faping,Wang Yao,Yan YigangORCID,Wu Chaoling

Abstract

The large volume expansion and self-locking phenomenon of metal hydride particles during hydrogen sorption often leads to a high stress concentration on the walls of a container, which may cause the collapse of the container. In present study, silicone oil was investigated as a glidant for a V-based BCC metal hydride bed to alleviate the stress concentration during hydrogen sorption. The results indicated that the addition of 5 wt% silicone oil slightly reduced the initial hydrogen storage capacity of V40Ti26Cr26Fe8 (particle size: ~325 μm) but improved the absorption reversibility, regardless of the oil viscosity. It was observed that silicone oil formed a thin oil layer of 320~460 nm in thickness on the surface of the V40Ti26Cr26Fe8 particles, which might improve the fluidity of the powder, reduce the self-locking phenomenon and alleviate the stress concentration on the container walls. Consequently, the maximum strain on the surface of the hydrogen storage container decreased by ≥22.5% after adding 5 wt% silicone oil with a viscosity of 1000 cSt.

Funder

NSAF

Key R&D Program of Sichuan Province

Sichuan University-Panzhihua City University-Enterprise Co-project

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3