Abstract
We present a detailed study of the structural and electrical changes occurring in two graphene oxide (GO) samples during thermal reduction in the presence of malonic acid (MA) (5 and 10 wt%) and P2O5 additives. The morphology and de-oxidation efficiency of reduced GO (rGO) samples are characterized by Fourier transform infrared, X-ray photoelectron, energy-dispersive X-ray, Raman spectroscopies, transmission electron and scanning electron microscopies, X-ray diffraction (XRD), and electrical conductivity measurements. Results show that MA and P2O5 additives are responsible for the recovery of π-conjugation in rGO as the XRD pattern presents peaks corresponding to (002) graphitic-lattice planes, suggesting the formation of the sp2-like carbon structure. Raman spectra show disorders in graphene sheets. Elemental analysis shows that the proposed reduction method in the presence of additives also suggests the simultaneous insertion of phosphorus with a relatively high content (0.3–2.3 at%) in rGO. Electrical conductivity measurements show that higher amounts of additives used in the GO reduction more effectively improve electron mobility in rGO samples, as they possess the highest electrical conductivity. Moreover, the relatively high conductivity at low bulk density indicates that prepared rGO samples could be applied as metal-free and non-expensive carbon-based electrodes for supercapacitors and (bio)sensors.
Funder
The Research Council of Lithuania
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献