Synthesis and Evaluation of 99mTc-Tricabonyl Labeled Isonitrile Conjugates for Prostate-Specific Membrane Antigen (PSMA) Image

Author:

Lodhi Nadeem AhmedORCID,Park Ji Yong,Kim Kyuwan,Hong Mi Kyung,Kim Young Joo,Lee Yun-SangORCID,Cheon Gi Jeong,Kang Keon Wook,Jeong Jae MinORCID

Abstract

Prostate-specific membrane antigen (PSMA) is a biomarker expressed on the surface of prostate cancer (PCa). In an effort to improve the detection and treatment of PCa, small urea-based PSMA inhibitors have been studied extensively. In the present study, we aimed to develop 99mTc-tricabonyl labeled urea-based PSMA conjugates containing isonitrile (CN-R)-coordinating ligands ([99mTc]Tc-15 and [99mTc]Tc-16). Both the PSMA conjugates were obtained at high radiochemical efficiency (≥98.5%). High in vitro binding affinity was observed for [99mTc]Tc-15 and [99mTc]Tc-16 (Kd = 5.5 and 0.2 nM, respectively) in PSMA-expressing 22Rv1 cells. Tumor xenografts were conducted using 22Rv1 cells and rapid accumulation of [99mTc]Tc-16 (1.87 ± 0.11% ID/g) was observed at 1 h post-injection, which subsequently increased to (2.83 ± 0.26% ID/g) at 4 h post-injection. However, [99mTc]Tc-15 showed moderate tumor uptake (1.48 ± 0.18% ID/g), which decreased at 4 h post-injection (0.81 ± 0.09% ID/g). [99mTc]Tc-16 was excreted from non-targeted tissues with high tumor-to-blood (17:1) and tumor-to-muscle ratio (41:1) at 4 h post-injection at approximately 4 times higher levels than [99mTc]Tc-15. Uptakes of [99mTc]Tc-15 and [99mTc]Tc-16 to PSMA-expressing tumor and tissues were significantly blocked by co-injection of 2-(Phosphonomethyl)-pentandioic acid (2-PMPA), suggesting that their uptakes are mediated by PSMA specifically. Whole-body single photon emission computed tomography imaging of [99mTc]Tc-16 verified the ex vivo biodistribution results and demonstrated clear visualization of tumors and tissues expressing PSMA compared to [99mTc]Tc-15. In conclusion, using [99mTc]Tc-16 rather than [99mTc]Tc-15 may be the preferable because of its relatively high tumor uptake and retention.

Funder

Ministry of Trade, Industry and Energy

Ministry of Health and Welfare

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3