Ferrocenyl Migrations and Molecular Rearrangements: The Significance of Electronic Charge Delocalization

Author:

McGlinchey Michael J.

Abstract

The enhanced stabilization of a carbocationic site adjacent to a ferrocenyl moiety was recognized within a few years of the discovery of sandwich compounds. While a detailed understanding of the phenomenon was the subject of some early debate, researchers soon took advantage of it to control the ease and direction of a wide range of molecular rearrangements. We, here, discuss the progress in this area from the pioneering studies of the 1960s, to more recent applications in chromatography and analytical detection techniques, and currently in the realm of bioactive organometallic complexes. Several classic reactions involving ferrocenyl migrations, such as the pinacol, Wolff, Beckmann, and Curtius, are discussed, as well as the influence of the ferrocenyl substituent on the mechanisms of the Nazarov, Meyer-Schuster, benzoin, and Stevens rearrangements. The preparation and isomerizations of ferrocenyl-stabilized vinyl cations and vinylcyclopropenes, together with the specific cyclization of acetylcyclopentadienyl-metal derivatives to form 1,3,5-substituted benzenes, demonstrate the versatility and generality of this approach.

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3