Connecting Main-Group Metals (Al, Ga, In) and Tungsten(0) Carbonyls via the N2S2 Metallo-Ligand Strategy

Author:

Yang Xuemei,Lunsford Allen,Darensbourg Marcetta Y.ORCID

Abstract

Tetradentate N2S2 ligands (such as bismercaptoethanediazacycloheptane in this study) have seen extensive use in combination with transition metals. Well-oriented N2S2 binding sites are ideal for d8 transition metals with square planar preferences, especially NiII, but also as a square pyramidal base for those metals with pentacoordinate preferences, such as [V≡O]2+, [Fe(NO)]2+, and [Co(NO)]2+. Further reactivity at the thiolate sulfurs generates diverse bi, tri, and tetra/heterometallic compounds. Few N2S2 ligands have been explored to investigate the possibility of binding to main group metals, especially group III (MIII) metals, and their utility as synthons for main group/transition metal bimetallic complexes. To open up this area of chemistry, we synthesized three new five-coordinate main group XMN2S2 complexes with methyl as the fifth binding ligand for M = Al, and chloride for M = Ga and In. The seven-membered diazacycle, dach, was engaged as a rigid stabilized connector between the terminal thiolate sulfurs. The pentacoordinate XMN2S2 complexes were characterized by 1H-NMR, 13C-NMR, +ESI-Mass spectra, and X-ray diffraction. Their stabilities and reactivities were probed by adding NiII sources and W(CO)5(THF). The former replaces the main group metals in all cases in the N2S2 coordination environment, demonstrating the weak coordinate bonds of MIII–N/S. The reaction of XMN2S2 (XM = ClGaIII or ClInIII) with the labile ligand W(0) complex W(CO)5(THF) resulted in Ga/In–W bimetallic complexes with a thiolate S-bridge. The synthesis of XMN2S2 complexes provide examples of MIII–S coordination, especially Al–S, which is relatively rare. The bimetallic Ga/In–S–W complex formation indicates that the nucleophilic ability of sulfur is retained in MIII–S–R, resulting in the ability of main group MIII–N2S2 complexes to serve as metalloligands.

Funder

National Science Foundation

Welch Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3