Carbonaceous FexP Synthesized via Carbothermic Reduction of Dephosphorization Slag as Hydrogen Evolution Catalyst for Water Splitting

Author:

He Sai,Liu Yaqin,Peng Shanlong,Lin Lu

Abstract

Developing the high-efficiency and cheap non-noble catalysts towards hydrogen evolution reaction (HER) is of significance for water splitting. Herein, for the first time, we report a simple method of acid leaching combined with carbothermic reduction with dephosphorization slag to construct a carbonaceous FexP/C catalyst. In alkaline medium, the corresponding overpotential when the output current density was 10 mA cm−2 (η10) was only 145 mV. Additionally, there was no obvious attenuation after 3000 cycles, which showed significantly better activity and stability than that of non-carbonaceous FexP catalysts prepared by gas–solid phosphating. The structure and composition of FexP/C were characterized by X-ray diffraction, scanning electron microscope, energy dispersive spectroscopy, and inductively coupled plasma atomic emission spectrometer. The electrochemical properties of the electrode were evaluated by cyclic voltammetry, linear scanning voltammetry, electrochemical impedance spectroscopy, and cyclic stability. The results showed that the prepared FexP/C was composed of FeP-Fe2P mixed nanocrystals supported on amorphous carbon. Compared with FexP, the synergistic catalysis of the FeP and Fe2P phases as well as the interactive support effect between the FeP-Fe2P mixed nanocrystals and the amorphous carbon support will attribute the rich active sites for electrocatalytic reaction and reduce the charge transfer resistance. Thus, FexP/C has good hydrogen evolution activity and stability. Overall, the preparation of catalysts with high additional value based on dephosphorization slag was preliminarily explored.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3