Abstract
The cubic oxyhydride perovskite BaTiO3−xHx, where the well-known ferroelectric oxide BaTiO3 is partially hydridized, exhibits a variety of functions such as being a catalyst and precursor for the synthesis of mixed-anion compounds by utilizing the labile nature of hydride anions. In this study, we present a hexagonal version, BaTi(O3−xHx) (x < 0.6) with the 6H-type structure, synthesized by a topochemical reaction using hydride reduction, unlike reported hexagonal oxyhydrides obtained under high pressure. The conversion of cubic BaTiO3 (150 nm) to the hexagonal phase by heat treatment at low temperature (950~1025 °C) using a Mg getter allows the introduction of large oxygen defects (BaTiO3−x; x − 0.28) while preventing the crystal growth of hexagonal BaTiO3, which has been accessible at high temperatures of ~1500 °C, contributing to the increase of the hydrogen content. Hydride anions in 6H-BaTiO3−xHx preferentially occupy face-sharing sites, as do other oxyhydrides.