CuFe2O4 Nanofiber Incorporated with a Three-Dimensional Graphene Sheet Composite Electrode for Supercapacitor and Electrochemical Sensor Application

Author:

Vinothini Sivaramakrishnan1,Keyan Arjunan Karthi1,Sakthinathan Subramanian1,Chiu Te-Wei1ORCID,Vittayakorn Naratip2ORCID

Affiliation:

1. Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan

2. Advanced Materials Research Unit, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, 1 Chalong Krung 1 Alley, Lat Krabang, Bangkok 10520, Thailand

Abstract

The demand for regenerative energy and electric automotive applications has grown in recent decades. Supercapacitors have multiple applications in consumer alternative electronic products due to their excellent energy density, rapid charge/discharge time, and safety. CuFe2O4-incorporated three-dimensional graphene sheet (3DGS) nanocomposites were studied by different characterization studies such as X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The electrochemical studies were based on cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements. As prepared, 3DGS/CuFe2O4 nanocomposites exhibited an excellent surface area, high energy storage with appreciable durability, and excellent electrocatalysis properties. A supercapacitor with 3DGS/CuFe2O4-coated nickel foam (NF) electrodes exhibited an excellent specific capacitance of 488.98 Fg−1, a higher current density, as well as a higher power density. After charge–discharge cycles in a 2.0 M KOH aqueous electrolyte solution, the 3DGS/CuFe2O4/NF electrodes exhibited an outstanding cyclic stability of roughly 95% at 10 Ag−1, indicating that the prepared nanocomposites could have the potential for energy storage applications. Moreover, the 3DGS/CuFe2O4 electrode exhibited an excellent electrochemical detection of chloramphenicol with a detection limit of 0.5 µM, linear range of 5–400 µM, and electrode sensitivity of 3.7478 µA µM−1 cm−2.

Funder

Taiwan’s Ministry of Science and Technology

National Taipei University of Technology–King Mongkut’s Institute of Technology Ladkrabang Joint Research Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3