Abstract
Development of catalysts for the selective hydrolysis of proteins is challenging, yet important for many applications in biotechnology and proteomics. The hydrolysis of hydrophobic proteins is particularly challenging, as due to their poor solubility, the use of surfactants is often required. In this study, the proteolytic potential of catalyst systems based on the Zr(IV)-substituted Keggin polyoxometalate (Et2NH2)10[Zr(PW11O39)2] (Zr-K 1:2) and three different surfactants (ionic SDS (sodium dodecyl sulfate); zwitterionic Zw3-12 (n-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate); and CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate)), which differ in structure and polarity, has been investigated. Hydrolysis of ovalbumin (OVA) was examined in the presence of Zr-K 1:2 and surfactants by sodium dodecyl sulfate poly(acrylamide) gel electrophoresis (SDS-PAGE), which showed the appearance of new polypeptide fragments at lower molecular weight, indicating that selective hydrolysis of OVA took place for all three catalyst systems. The same fragmentation pattern was observed, showing that the selectivity was not affected by surfactants. However, the surfactants influenced the performance of the catalyst. Hence, the interactions of OVA with surfactants and Zr-K 1:2 were investigated using different techniques such as tryptophan fluorescence, Circular Dichroism, and Dynamic Light Scattering. The speciation of the catalyst in surfactant solutions was also followed by 31P Nuclear Magnetic Resonance spectroscopy providing insight into its stability under reaction conditions.
Funder
Fonds Wetenschappelijk Onderzoek
Horizon 2020 Framework Programme
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献