Sheaf-like Manganese-Doped Zinc Silicate with Enhanced Photoluminescence Performance

Author:

Li Xiaohong1,Zhang Xiaozhen1ORCID,Yu Yongzhi1,Wang Leying1,Cheng Si1,Zhan Hongquan1,Liu Runyuan2,Chen Renhua2

Affiliation:

1. School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China

2. Jiangxi Jinhuan Pigments Co., Ltd., Yichun 336000, China

Abstract

Sheaf-like manganese-doped zinc silicate (Mn-doped Zn2SiO4) was successfully synthesized without surfactant by hydrothermal route using manganese acetate, zinc nitrate, and sodium silicate as precursors. The structure, morphology, and optical properties were well investigated by various analytical techniques, such as X-ray diffraction (XRD), a scanning electron microscope (SEM), a transmission electron microscope (TEM), and photoluminescence (PL). The results showed the enhancement of crystallinity and an increase in the length of the as-prepared sample, which was achieved by prolonging the hydrothermal time. Based on the analysis of the XRD pattern, it can be stated that the sheaf-like Mn-doped Zn2SiO4 possesses a large lattice distortion compared to pure Zn2SiO4. Moreover, it was observed that hydrothermal times played a crucial role in the PL property. The PL peak intensity of samples located at 522 nm generally increased with the increase in reaction time in the range of 12–48 h. However, when the treating time reached 72 h, the property of PL decreased. The results of the PL spectra showed that Mn-doped Zn2SiO4 obtained by a hydrothermal time of 48 h displayed an efficient luminescent performance. The key to the high PL property mainly lies in the sheaf-like structure and large lattice distortion.

Funder

National Natural Science Foundation of China

Science and Technology Research Project of Jiangxi Provincial Education Department

Jingdezhen City Science and Technology Project

Jiangxi Provincial key research and development program

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3