Affiliation:
1. School of Nano Convergence Technology, Nano Convergence Technology Center, Hallym University, Chuncheon 24252, Republic of Korea
Abstract
In recent years, there have been intense studies on hybrid organic–inorganic compounds (HOIPs) due to their tunable and adaptable features. This present study reports the vibrational, structural, and elastic properties of mixed halide single crystals of MAxFA1-xPbCl3 at room temperature by introducing the FA cation at the A-site of the perovskite crystal structure. Powder X-ray diffraction analysis confirmed that its cubic crystal symmetry is similar to that of MAPbCl3 and FAPbCl3 with no secondary phases, indicating a successful synthesis of the MAxFA1-xPbCl3 mixed halide single crystals. Structural analysis confirmed that the FA substitution increases the lattice constant with increasing FA concentration. Raman spectroscopy provided insight into the vibrational modes, revealing the successful incorporation of the FA cation into the system. Brillouin spectroscopy was used to investigate the changes in the elastic properties induced via the FA substitution. A monotonic decrease in the sound velocity and the elastic constant suggests that the incorporation of large FA cations causes distortion within the inorganic framework, altering bond lengths and angles and ultimately resulting in decreased elastic constants. An analysis of the absorption coefficient revealed lower attenuation coefficients as the FA content increased, indicating reduced damping effects and internal friction. The current findings can facilitate the fundamental understanding of mixed lead chloride perovskite materials and pave the way for future investigations to exploit the unique properties of mixed halide perovskites for advanced optoelectronic applications.
Funder
National Research Foundation of Korea
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献